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ABSTRACT   

Deep-learning methods are gaining popularity because of their state-of-the-art performance in image classification tasks. 

In this paper, we explore classification of laser-beam images from the National Ignition Facility (NIF) using a novel deep-

learning approach. NIF is the world’s largest, most energetic laser. It has nearly 40,000 optics that precisely guide, reflect, 

amplify, and focus 192 laser beams onto a fusion target. NIF utilizes four petawatt lasers called the Advanced Radiographic 

Capability (ARC) to produce backlighting X-ray illumination to capture implosion dynamics of NIF experiments with 

picosecond temporal resolution.  In the current operational configuration, four independent short-pulse ARC beams are 

created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier. The sub-

aperture beams then propagate through the NIF beampath up to the ARC compressor. Each ARC beamlet is separately 

compressed with a dedicated set of four gratings and recombined as sub-apertures for transport to the parabola vessel, 

where the beams are focused using parabolic mirrors and pointed to the target.  Small angular errors in the compressor 

gratings can cause the sub-aperture beams to diverge from one another and prevent accurate alignment through the 

transport section between the compressor and parabolic mirrors. This is an off-normal condition that must be detected and 

corrected. The goal of the off-normal check is to determine whether the ARC beamlets are sufficiently overlapped into a 

merged single spot or diverged into two distinct spots. Thus, the objective of the current work is three-fold: developing a 

simple algorithm to perform off-normal classification, exploring the use of Convolutional Neural Network (CNN) for the 

same task, and understanding the inter-relationship of the two approaches. The CNN recognition results are compared with 

other machine-learning approaches, such as Deep Neural Network (DNN) and Support Vector Machine (SVM). The 

experimental results show around 96% classification accuracy using CNN; the CNN approach also provides comparable 

recognition results compared to the present feature-based off-normal detection. The feature-based solution was developed 

to capture the expertise of a human expert in classifying the images. The misclassified results are further studied to explain 

the differences and discover any discrepancies or inconsistencies in current classification.  
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1. INTRODUCTION  

The National Ignition Facility (NIF) is the world’s largest, most energetic laser. It has nearly 40,000 optics that precisely 

guide, reflect, amplify, and focus 192 laser beams onto a fusion target, and thus provides a platform for performing high-

energy laser physics experiments [1,2]. A diagnostic known as the Advanced Radiographic Capability (ARC) was 

developed to properly understand the implosion dynamics [3,4]. ARC produces backlighting high-energy X-ray beams 

that can penetrate and image the implosion as it is happening. Currently, four independent short-pulse ARC beams are 

created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier.  The 

sub-aperture beams are amplified using NIF hardware as they propagate through the NIF beampath up to the ARC 

compressor. Each ARC beamlet is separately compressed with a set of four gratings and recombined as sub-apertures for 

transport to the parabola vessel, where the beams are focused using parabolic mirrors and pointed to the target.  Small 

angular deviations in the compressor gratings can introduce pointing errors in the sub-aperture beams and cause them to 

diverge from one another. This prevents accurate alignment through the transport section between the compressor and 

parabolic mirrors.  This off-normal condition must be identified using Automatic Alignment (AA) algorithms [5] and 

corrected before continuing with the ARC shot [6]. The off-normal check determines whether the ARC beamlets are 

merged into a single spot or have diverged into two distinct spots. Typical examples of single- and double-spot ARC 

alignment beam images and the ARC beamlets are shown in Figure 1. 



 

 
 

 

         
 

                           (a)                                                               (b)                                                           (c) 

Figure 1. Example of ARC (a) single-spot  and (b) double-spot far-field alignment beam images; (c) Near-field image of the 

ARC beamlets 

 

For this paper, a feature-based learning system was developed to identify the two spots’ off-normal condition. The feature-

based solution was gradually learned with the help of a human subject matter expert. Additionally, we explore the above 

classification task using novel deep-learning approaches: Convolutional Neural Network (CNN) [7,8], Deep Neural 

Network (DNN) [9] and Support Vector Machine (SVM) [10]. The misclassified results are further studied to explain the 

differences and discover any discrepancies or inconsistencies in current classification.  

 

The rest of the paper has been organized as follows: Section 2 discusses the present feature-based approach for off-normal 

classification of laser beams. The theoretical details of different deep-learning techniques are presented in Section 3. 

Section 4 shows the details of the experimental results and analysis, followed by conclusions in the final section. 

2. FEATURE-BASED LEARNING SYSTEM  

The set of NIF ARC images consists of 372 images.  We visually examined the image set and determined that it contained 

three types of images. One class of images depicts a single spot; another class contains double spots, and the rest appear 

to be more than two spots or a collection of diffracted spots. In building the algorithm, the simple cases were classified 

first using binarization and feature analysis. If the binarization produced a single spot, it was classified as one spot. If 

binarization produced two spots, it was categorized as a double-spot image. However, the two- or single-spot classification 

depends on the intensity level at which binarization was performed. Therefore, it was important to set the initial intensity 

level for examining the image carefully. Since the second spot was originally expected to be equally bright, after some 

experimentation the binarization threshold was set to 64% of the peak intensity as shown in Fig. 2.  

 
Figure 2. Thresholding approaches for different tests 

 

To ensure that the second spot was not a spurious noise signal but a viable spot, three parameters were examined: the 

energy ratio, the blob-size ratio, and the separation between the spots. During the initial learning phase of the feature-based 

classification, we set the following restrictions on the allowable two-spot characteristics: 



 

 
 

 

 

Number of spots = 2 

Energy Ratio > 25% (ratio of energy of the second highest sized blob to the highest intensity blob) 

Blob Ratio > 30% (ratio of sizes) 

Separation > 13 pixels (distance between the centroids of the two blobs) 

 

This first classification attempt, called Test 1 and shown in Figure 3, classified 30% of the images and missed many more. 

The condition was augmented by additional conditions, such as the number of spots equals 4 where the 4th spot had fewer 

than 10 pixels. At the same time, a human expert was consulted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flowchart of feature-extraction-based approach  for  beam classification 

When the additional conditions failed to detect some of the two-spot images, the threshold was reduced to half of the 

original threshold.  Tests were then performed using similar values of the three parameters: these were tests 2, 3 and 5. 

The goal was to detect as many obvious two-spot images as possible.  Decreasing the binarization threshold from 64% to 

32% of the peak intensity resulted in 15% of the images being detected using tests 1,2,3,4, and 5. 

 

There were some cases, however, that could still not be detected with tests 1 to 5. After consulting a human expert and 

obtaining the recommended classes, additional conditions were added to bring the missed examples into the class. The 

additional test is based on the observation that, as shown in Figure 2, it is possible for both 64% and its half threshold to 

fail to detect two spots because at those thresholds only a single binary object is detected. An additional test (Test 6) was 

added which divided the interval of the two thresholds into ten steps and looked for two spots. Test 6 assigned 55% of the 

remaining images and sorted them into the proper classes. Thus tests 1-6 provided classification of 100% of the images. 
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3. DEEP-LEARNING METHODS  

3.1 Convolutional Neural Network (CNN)  

The CNN architecture was proposed by Fukushima in 1980 [11]. It was not widely used, however, because the training 

algorithm required high computational power. In 1998, Lacuna et al. applied a gradient-based learning algorithm to CNN 

and obtained successful results in different application domains including image processing, computer vision, machine 

learning, and others [7,8,12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure 4. The overall architecture of the CNN used in this work, which includes an input layer, multiple alternating 

convolution and sub-sampling (pooling) layers, and one fully connected classification layer. 

Figure 4 shows the overall architecture of the CNN, which consists of two main parts: feature extractor and classifier. In 

the feature extraction layers, each layer of the network receives the output from the immediate previous layer as its input 

and passes its output as an input to the next layer. The CNN architecture is composed of the combination of three types of 

layers: convolution, sub-sampling (pooling), and classification. Convolution and max-pooling are two types of layers in 

the low and middle levels of the network. The even-numbered layers are for convolution, and the odd-numbered layers 

work for max-pooling operation. Each node of the convolution layer extracts the features from the input images by 

convolution operation on the input nodes. The sub-sampling (pooling) layer abstracts the feature through average or 

propagating the operation on input nodes. The output nodes of the convolution and max-pooling layers are grouped into a 

2D plane, which is called feature mapping. Each plane of the layer is usually derived with the combination of one or more 

planes of the previous layers. The node of the plane is connected to a small region of each connected plane of the previous 

layer.  

 

The higher-level features have been derived from the propagated features of the lower-level layers. As the feature 

propagates to the highest layer or level, the dimension of the feature is reduced depending on the size of the convolutional 

and max-pooling masks, respectively. The number of mapped features usually is increased, however, for selecting or 

mapping the extreme suitable features of the input images for better classification accuracy. The outputs of the last layer 

of CNN are used as inputs to the fully connected neural network, which is called the classification layer. The feed-forward 

neural networks are used as a classifier in this work because they already have proven to perform better compared to others 

[9,13]. In the classification layer, all the features from the feature extraction layer are connected as inputs to the fully 

connected layer. Sometimes feature selection techniques have been applied [12] from selecting the desired number of 

nodes from the CNN’s output layer.  The score of the respective class has been calculated in the top classification layer 
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using the softmax layer.  Based on the highest score, the classifier gives outputs for the corresponding classes after finishing 

the propagation.  Mathematical details on different layers of CNN are discussed in the following section. 

 

3.1.1 Convolutional layer 

In this layer, the feature maps of the previous layer are convolved with a learnable kernel such as random or Gabor. In this 

implementation, random filters are used. The outputs of the kernel go through linear or non-linear activation functions of 

Rectified Linear Unit (ReLU) to form the output feature maps. Each of the output feature maps can be combined with 

more than one input feature map. In general, we have that 

                                             𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖𝜖𝑀𝑗

∗  𝑘𝑖𝑗
𝑙 +  𝑏𝑗

𝑙)                                                                                (1) 

where 𝑥𝑗
𝑙 is the output of the current layer,  𝑥𝑖

𝑙−1 is previous layer output, 𝑘𝑖𝑗
𝑙  is the kernel for the present layer, and  𝑏𝑗

𝑙 is 

the bias for the current layer. 𝑀𝑗 represents a selection of input maps. For each output map is given an additive bias 𝑏. The 

input maps, however, will be convolved with distinct kernels to generate the corresponding output maps.   

3.1.2 Subsampling layer 

The subsampling layer performs down sampling operations on the input maps. In this layer, the input and output maps do 

change. Due to the down sampling operation, the size of the output maps will be reduced depending on the size of the 

down sampling mask. In this experiment, 2×2 down sampling masks have been used. If there are 𝑁 input maps, then there 

will be exactly 𝑁 output maps. This operation can be formulated as 

 

                                  xj
l = f(βj

l down(xj
l−1) + bj

l)                                                                                   (2) 

where down ( . ) represents a sub-sampling function. This function usually sums up over 𝑛 × 𝑛 blocks of the maps from 

the previous layers and selects the average value or selects the highest values among the 𝑛 × 𝑛   block maps. Therefore, 

the output map dimension has been reduced 𝑛 times with respect to both dimensions. The output map will be added with 

bias 𝑏. Finally, the outputs go through a linear or non-linear activation function.  

3.1.3 Classification layer 

This is the fully connected layer which computes the score of each class from the extracted features from the convolutional 

layer in the preceding steps. In this work, the size of the feature maps for the fully connected layer one 5×5×12. The final 

layer feature maps have been considered as scalar values which passed to the fully connected layers, and a feed-forward 

neural approach has been used for the classification. As for the activation function, the softmax function is employed in 

this implementation.  

 

In the backward propagation through of the CNNs, the filters have been updated for the convolution layer by performing 

the convolutional operation between the convolutional layer and the immediate previous layer on the feature maps. The 

change of the weight matrix for the neural network layer is calculated accordingly. 

3.2 Deep Belief Network (DBN) 

DBN is constructed with a stack of Restricted Boltzmann Machines (RBM). RBM is based on the Markov Random Field 

(MRF) and has two units: binary stochastic hidden unit, and binary stochastic visible unit. It is not mandatory for the unit 

to be a Bernoulli random variable, and it can in fact have any distribution in the exponential family [14]. Besides, there 

are connections between hidden to visible and visible to hidden layers, but there is no connection between hidden-to- 

hidden or visible-to-visible units. The pictorial representation of RBM and DBN are shown in Figure 5. 



 

 
 

 

 

Figure 5. Block diagram for RBM (left) and DBN (right) 

 

The symmetric weights on the connections and biases of the individual hidden and visible units have been calculated based 

on a probability distribution over the binary state vector of v for the visible units via an energy function. The RBM is an 

energy-based undirected generative model which uses a layer of hidden variables to model the distribution over the visible 

variable in the visible units [15]. In the undirected model of the interactions between the hidden and visible variables, both 

units are used to confirm that the contribution of the probability term to posterior over the hidden variables is approximately 

factorial, which greatly facilitates inference [16].  

 

An energy-based model means that the likely distribution over the variables of interest is defined through an energy 

function. It can be composed from a set of observable variables 𝑉 = {𝑣𝑖} and a set of hidden variables 𝐻 = {ℎ𝑖}  where 𝑖 
is the node in the visible layer and 𝑗 is the node in the hidden layer. It is restricted in the sense that there are no visible-

visible or hidden-hidden connections. The values correspond to “visible” units of the RBM because their states are 

observed; the feature detectors correspond to “hidden” units. A joint configuration, (𝑣, ℎ) of the visible and hidden units 

has an energy given by [14]: 

   𝐸(𝑣, ℎ; 𝜃) = − ∑ 𝑎𝑖𝑖 𝑣𝑖 − ∑ 𝑏𝑗𝑗 ℎ𝑗 − ∑  ∑ 𝑣𝑖𝑗   𝑤𝑖,𝑗   𝑖 ℎ𝑗                                                                                            (3) 

where 𝜃 = (𝑤, 𝑏, 𝑎),  𝑣𝑖  and ℎ𝑗 are the binary states of visible unit 𝑖 and hidden unit 𝑗,  𝑎𝑖, 𝑏𝑗 are their biases and 𝑤𝑖𝑗  is the 

symmetric weight in between visible and hidden units. The network assigns a probability to every possible pair of a visible 

and a hidden vector via this energy function as 

𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ)                                                                                                                        (4) 

where the “partition function” 𝑍 is given by summing over all possible pairs of visible and hidden vectors as follows: 

    𝑍 = ∑ 𝑒−𝐸(𝑣,ℎ)
𝑣,ℎ .                                                                                                                      (5) 

The probability which the network assigns to a visible vector, 𝑣, is generated through the summation over all possible 

hidden vectors as 

 

                       𝑝(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ .                                                                                                              (6)   

The probability the network assigns to a training image can be improved by adjusting the symmetric weights and biases 

to lower the energy of that image and to increase the energy of other images, especially those that have low energies,   

resulting in a huge contribution for the partitioning function. The derivative of the log probability of a training vector with 

respect to symmetric weight is remarkably simple, computed as 

 

             
𝜕𝑙𝑜𝑔𝑝(𝑣)

𝜕𝑤𝑖𝑗
= ⟨𝑣𝑖ℎ𝑗⟩

𝑑𝑎𝑡𝑎
− ⟨𝑣𝑖ℎ𝑗⟩

𝑚𝑜𝑑𝑒𝑙
                                                                                                       (7)  



 

 
 

 

where the angular brackets are used to represent the expectations under the distribution specified by the subscript that 

follows. It leads to a very simple learning rule for performing stochastic steepest ascent in the log probability on the training 

data 

                      𝑤𝑖𝑗 = 𝜀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

)                                                                                                    (8) 

where 𝜀 is a learning rate. Due to no direct connectivity between hidden units in an RBM, it is easy to get an unbiased 

sample of ⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

. Given a randomly selected training image, 𝑣, the binary state  ℎ𝑗 of each hidden unit  𝑗 is set to 1 

with the probability 

                     𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑖 𝑤𝑖𝑗)                                                                                                     (9) 

where 𝜎(𝑥) is the logistic sigmoid function 1 (1 + 𝑒(−𝑥))⁄ , 𝑎𝑛𝑑 𝑣𝑖ℎ𝑗 is then an unbiased sample. As there are no direct 

connections between visible units in an RBM, it is also easy to get an unbiased sample of the state of a visible unit, given 

a hidden vector 

                            𝑝(𝑣𝑖 = 1|ℎ) = 𝜎(𝑎𝑖 + ∑ ℎ𝑗𝑗 𝑤𝑖𝑗) .                                                                                            (10) 

It is much more difficult, however, to generate an unbiased sample of  ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

. It can be done in the beginning at any 

random state of visible layer and by performing alternative Gibbs sampling for a very long period.  Gibbs sampling consists 

of updating all the hidden units in parallel using Eq. (9) in one alternating iteration followed by updating all the visible 

units in parallel using Eq. (10).  

A much faster learning procedure, however, has been proposed by Nair and Hinton [9]. This approach starts by setting the 

states of the visible units to a training vector. Then the binary states of the hidden units are all computed in parallel 

according to  Eq. (9). Once binary states have been selected for the hidden units, a “reconstruction” is generated by setting 

each 𝑣𝑖  to 1 with a probability given by Eq. (10). The change in a weight matrix can be written by 

                ∆𝑤𝑖𝑗 = 𝜀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑟𝑒𝑐𝑜𝑛

) ,                                                                                                (11) 

a simplified version of the same learning rule that uses the states of individual units. The pairwise products approach, 

however, is used for the biases. The learning rule closely approximates the gradient of another objective function called 

the Constrictive Divergence (CD) [15] which differs from Kullback-Liebler divergences. It works well, however, to 

achieve better accuracy in many applications. CD is used to denote learning using n full steps of alternating Gibbs 

sampling. 

 

The pre-training procedure with RBM is utilized to initialize the weight of the deep neural network, which is 

discriminatively fine-tuned by back-propagating error derivative. The sigmoid function is used as an activation function 

for this implementation. For the Deep Neural Networks (DNN) implementation, we have just used a traditional neural 

network with multiple hidden layers. 

4. DATABASE AND EXPERIMENTAL RESULTS  

4.1 Database  

A database with 360 images was created from the set of 372 images mentioned in Section 2. The original data dimensions 

are 1300×1100 obtained from a NIF camera. Images were manually cropped to include the desired region to a 32×32 size. 

The images are single-channel gray-scale images. The dataset is split into two groups; one set is used for training of 

different deep-learning techniques including CNN, DBN and DNN. The training set contains 300 samples. The remaining 

set of 60 images are used for testing in this implementation. Some of the example images from the database are shown in 

Figure 6.  



 

 
 

 

 

Figure 6. Example image from final dataset 

4.2 Experimental results 

 

In this work, we have classified two classes of composite optical beams using CNN, DBN, DNN and SVM [10]. We have 

used a simple architecture of CNN in this implementation. The network has six layers including input and output or 

classification layers, with two convolutional and sub-sampling (pooling) layers, and one fully connected layer.  In the first 

experiment, we trained the network with 500 epochs, with batch size of 20, and learning rate of 1. The following figure 

shows the errors during training with respect to epoch for different methods. In the testing phase, we used the remaining 

60 samples.  

 

 

Figure 7. Errors during training with NN, DBN and CNN 
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To evaluate the performance of CNN, we trained and tested the system for 500 epochs. The blue line in Figure 7 shows 

the training errors with respect to the number of epoch for CNN. During the training, very smooth convergence behavior 

was observed in the case of CNN.   Figure 7 also shows the training errors with respect to the number of epochs for DBN 

in green. It  can be clearly seen that after 200 epochs, error does not reduce much. The transfer learning approach is used 

for implementing DBN. For implementing  DBN, we considered the structure of 1024->500->100->2, where 1024 is the 

number of input neurons, 500 and 100 are the number of hidden neurons, and 2 is the number of neurons in the outputs 

layer. The DBN is pre-trained with the unsuprevised feature-learning approach of RBM, which generates the inititial 

weights, and the whole network is fine-tuned with a neural network with the backpropagation technique. The visualization 

of features learned during training using DBN is shown in Figure 8. 

 

Figure 8. Visualization of features learned with DBN 

 

Furthermore, we have implemented a DNN-based beam-classificaiton system. The DNN consists of architecture of 1024-

>512->100->2. where the DNN structure utilizes about 1024 input neurons, 512 and 100 neurons in the second and third 

hidden layers, and 2 neurons in the classification layer. The whole experiment is conducted for 500 epochs, with a batch 

size of 20 and a learning rate of 1. The red line in Figure 7 shows the training errors with respect to the epochs for the 

DNN technique. A very stable behavior is observed after around 275 epochs, which indicates that the eorror does not 

change after that particualr iteration. Moreover, SVM is implemented for beam classificiton for comparing against deep- 

learning techniques. 

 



 

 
 

 

 

Figure 9. Testing accuracy for different methods 

 

We have tested this method with 60 randomly selected testing samples. The bar graph in Figure 9 shows the average testing 

accuracy for times with CNN, DNN, DBN, and SVM. The experimental testing result shows about 95.86% testing 

accuracy for CNN. We have achieved about 86.66% classification accuracy for the DNN approach. The better accuracy 

of about 96.67%, however, is achieved using DBN which is pretrained with RBM and finetuned with NN. The SVM shows 

about 86.56% classification accuracy as testing accuracy for beam classification. 

 

Figure 10. Confusion matrix for beam classification using DBN. 

 

The confusion matrix for the highest classification accuracy in the testing phase using DBN is shown in Figure 10. From 

the figure, it can be clearly observed that  out of 60 samples, 29 samples are classified as first and second class, respectively. 

Two samples, however, are misclassified as class two as shown in Figure 9. The overall testing accuracy shown in Figure 

8 is 96.7%. 
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Figure 11. Misclassified images: actual class one, classified as class two 

 

4.3 Introspection 

Deep learning is a data-driven learning approach. Due to the small number of training and testing samples, the deep 

learning approach provided reasonable recognition accuracy. If the number of training samples is increased, however, the 

deep-learning-based approaches will provide even better accuracy compared to any traditional machine-learning 

approaches. Another comparison with feature-learning-based approaches is that the CNN has multiple layers of feature 

extraction and selection in multiple levels. The second feature extraction layer (convolution and subsampling) combines 

multiple features from the first layer and aggregates them into a more complex feature relationship layer. The final 

completely connected layers make class decisions by combining sets of second-layer features.  

5. CONCLUSION   

In this work, we have implemented different deep learning techniques for classification of composite optical laser beams. 

The experimental results show 95.86%, 86.66%, 96.67%, and 86.56% testing accuracy using CNN, DNN, DBN and SVM, 

respectively. The best classification accuracy is observed using Deep Belief Network (DBN) methods compared to other 

techniques. In the future, we would like to implement this solution with a transfer-learning approach [17]. In addition, we 

would like to implement this problem on a Neuromorphic system called IBM’s TrueNorth system [18]. 
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